#infiniteproduct

Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2024-05-12

An interesting infinite product!

\[\displaystyle\prod_{n=1}^\infty\coth^{(-1)^n}\left(\dfrac{\pi n}{2}\right)=\dfrac{\sqrt\pi}{\sqrt[4]2\sqrt{\varpi}}\]

where \(\varpi=2.62205755\ldots\) is the lemniscate constant (the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of \(\pi\) for the circle). Both \(\varpi\) and \(\pi\) are proven to be transcendental.

#lemniscate #lemniscateconstant #product #infiniteproduct #HyperbolicFunction #HyperbolicCotangent #Function #pi #maths #math

Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2024-05-09

For any integer \(n\geq3\),

\[\left\lfloor\dfrac{1}{1-\displaystyle\prod_{k=n}^\infty\left(1-\dfrac{1}{F_k}\right)}\right\rfloor=F_{n-2}\]
where \(F_n\) is the \(n\)-th Fibonacci number.
#FibonacciNumber #Fibonacci #FibonacciSequence #FibonacciSeries #Product #FloorFunction #Floor #InfiniteProduct

Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2024-04-12

Interestingly, \(\pi^\text{th}\) root of \(4\) can be expressed as the following limit.
\[\boxed{\displaystyle\sqrt[\pi]4=\lim_{n\to\infty}\prod_{k=0}^n\dfrac{\pi}{2\tan^{-1}(n+k)}}\]

Proof:
Let \(\Phi_n=\displaystyle\prod_{k=0}^n\dfrac{\pi}{2\tan^{-1}(n+k)}\). And taking natural logarithms on both sides, we get
\[\begin{align*}\ln\Phi_n&=\displaystyle\sum_{k=0}^n\left(\ln\left(\frac{\pi}{2}\right)-\ln\tan^{-1}(n+k)\right)\\&=\sum_{k=0}^n\left(\ln\left(\frac{\pi}{2}\right)-\ln\left(\dfrac{\pi}{2}-\tan^{-1}\left(\dfrac{1}{n+k}\right)\right)\right)\\&=-\sum_{k=0}^n\ln\left(1-\dfrac{2}{\pi}\tan^{-1}\left(\dfrac{1}{n+k}\right)\right)\\&=-\sum_{k=0}^n\left(-\dfrac{2}{\pi(n+k)}+O\left(\dfrac{1}{n^2}\right)\right)\\&=\dfrac{2}{\pi}\sum_{k=0}^n\dfrac{1}{n+k}+O\left(\dfrac{1}{n}\right)\end{align*}\]
Taking limit \(n\to\infty\), we get
\[\begin{align*}\displaystyle\lim_{n\to\infty}\ln\Phi_n&=\dfrac{2}{\pi}\lim_{n\to\infty}\dfrac{1}{n}\sum_{k=0}^n\dfrac{1}{1+\frac{k}{n}}+\lim_{n\to\infty}O\left(\dfrac{1}{n}\right)\\&=\dfrac{2}{\pi}\displaystyle\int_0^1\dfrac{\mathrm{d}x}{1+x}\\&=\dfrac{2}{\pi}\ln2=\ln\sqrt[\pi]4\end{align*}\]

Hence, the required limit:
\[\boxed{\displaystyle\lim_{n\to\infty}\prod_{k=0}^n\dfrac{\pi}{2\tan^{-1}(n+k)}=\displaystyle\lim_{n\to\infty}\Phi_n=\sqrt[\pi]4}\ \textbf{Q.E.D.}\ \blacksquare\]

*Note:
\(\tan^{-1}(x)=x-\dfrac{x^3}{3}+\dfrac{x^5}{5}+O(x^6)\)
\(\ln(1-x)=-x-\dfrac{x^2}{2}-\dfrac{x^3}{3}-\dfrac{x^4}{4}-\dfrac{x^5}{5}+O(x^6)\)
\(\ln\left(1-\dfrac{2}{\pi}\tan^{-1}(x)\right)=-\dfrac{2x}{\pi}+O(x^2)\)

#pi #limit #product #proof #pithrootof4 #interestinglimit #infiniteproduct #infinitesum #logarithm

Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2023-01-04

PRODUCTS OVER PRIME NUMBERS [2/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\left(1+\dfrac{1}{p(p+1)}\right)=\prod_{p\in\mathbb{P}}\dfrac{1-p^{-3}}{1-p^{-2}}=\dfrac{\zeta(2)}{\zeta(3)}=\dfrac{\pi^2}{6\zeta(3)}\]
\[\displaystyle\prod_{p\in\mathbb{P}}\left(1+\dfrac{1}{p(p-1)}\right)=\prod_{p\in\mathbb{P}}\dfrac{1-p^{-6}}{(1-p^{-2})(1-p^{-3})}=\dfrac{\zeta(2)\zeta(3)}{\zeta(6)}=\dfrac{315}{2\pi^4}\zeta(3)\]
#PrimeProducts #RiemannZetaFunction #EulerProduct #ZetaFunction #InfiniteProduct #NumberTheory

Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2023-01-04

SOME PRODUCTS OVER PRIME NUMBERS [1/2]:
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{1}{1-p^{-s}}=\prod_{p\in\mathbb{P}}\left(\sum_{k=0}^\infty\dfrac{1}{p^{ks}}\right)=\sum_{n=1}^\infty\dfrac{1}{n^s}=\zeta(s)\]
\[\displaystyle\prod_{p\in\mathbb{P}}\dfrac{p^s+1}{p^s-1}=\prod_{p\in\mathbb{P}}\left(1+\frac{2}{p^s}+\frac{2}{p^{2s}}+\cdots\right)=\sum_{n=1}^\infty\dfrac{2^{\omega(n)}}{n^s}=\dfrac{\zeta(s)^2}{\zeta(2s)}\]
#PrimeProducts #EulerProduct #RiemannZetaFunction #ZetaFunction #InfiniteProduct

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst