#BudgetAI

AI Daily Postaidailypost
2026-02-02

Google’s Gemini LLM doubles as an AI assistant that can design a 7‑day, low‑cost meal plan for just $200. See how the model balances nutrition, variety and grocery‑budget optimization, and learn tips to stretch your food dollars. Curious about the tech behind budget‑friendly cooking? Read the full story.

🔗 aidailypost.com/news/gemini-he

2025-10-18

🚀 Mởclosures ứng dụng quản lý nhà Budget AI trong WhatsApp! Snapshot thuê mặt → AI phân tích chi tiêu + báo cáo thông tin tiện lợi. BETA public, 12 tháng miễn phí cho người tham gia đầu tiên. 💬 Gửi DM để thử ngay!
#BudgetAI #WhatsApp #AppQuảnLýChiTiền #AI #QuảnLýTiền

reddit.com/r/SaaS/comments/1oa

Debby ‬⁂📎🐧:disability_flag:debby@hear-me.social
2025-09-13

Hoi iedereen! 👋
Vragen aan de community:

Heeft iemand ervaring met deze GPU’s? Welke zou je aanbevelen voor het lokaal draaien van grotere LLMs?
Zijn er andere budgetvriendelijke server-GPU’s die ik misschien heb gemist en die geweldig zijn voor AI-workloads?
Heb je tips voor het bouwen van een kosteneffectieve AI-workstation? (Koeling, voeding, compatibiliteit, enz.)
Wat is jouw favoriete setup voor lokale AI-inferentie? Ik zou graag over jullie ervaringen horen!

Alvast bedankt! 🙌"
#AIServer #LokaleAI #BudgetBuild #LLM #GPUAdvies #ThuisLab #AIHardware #DIYAI #ServerGPU #TweedehandsTech #AIGemeenschap #OpenSourceAI #ZelfGehosteAI #TechAdvies #AIWorkstation #MachineLeren #AIOnderzoek #FediverseAI #LinuxAI #AIBouw #DeepLearning #ServerBouw #BudgetAI #AIEdgeComputing #Vragen #CommunityVragen

Debby ‬⁂📎🐧:disability_flag:debby@hear-me.social
2025-09-13

Hey everyone 👋

I’m diving deeper into running AI models locally—because, let’s be real, the cloud is just someone else’s computer, and I’d rather have full control over my setup. Renting server space is cheap and easy, but it doesn’t give me the hands-on freedom I’m craving.

So, I’m thinking about building my own AI server/workstation! I’ve been eyeing some used ThinkStations (like the P620) or even a server rack, depending on cost and value. But I’d love your advice!

My Goal:
Run larger LLMs locally on a budget-friendly but powerful setup. Since I don’t need gaming features (ray tracing, DLSS, etc.), I’m leaning toward used server GPUs that offer great performance for AI workloads.

Questions for the Community:
1. Does anyone have experience with these GPUs? Which one would you recommend for running larger LLMs locally?
2. Are there other budget-friendly server GPUs I might have missed that are great for AI workloads?
3. Any tips for building a cost-effective AI workstation? (Cooling, power supply, compatibility, etc.)
4. What’s your go-to setup for local AI inference? I’d love to hear about your experiences!

I’m all about balancing cost and performance, so any insights or recommendations are hugely appreciated.

Thanks in advance! 🙌

@selfhosted@a.gup.pe #AIServer #LocalAI #BudgetBuild #LLM #GPUAdvice #Homelab #AIHardware #DIYAI #ServerGPU #ThinkStation #UsedTech #AICommunity #OpenSourceAI #SelfHostedAI #TechAdvice #AIWorkstation #LocalAI #LLM #MachineLearning #AIResearch #FediverseAI #LinuxAI #AIBuild #DeepLearning #OpenSourceAI #ServerBuild #ThinkStation #BudgetAI #AIEdgeComputing #Questions #CommunityQuestions #HomeLab #HomeServer #Ailab #llmlab

What is the Best used GPU Pick for AI Researchers?
 GPUs I’m Considering:
| GPU Model            | VRAM          | Pros                                      | Cons/Notes                          |
| Nvidia Tesla M40          | 24GB GDDR5        | Reliable, less costly than V100              | Older architecture, but solid for budget builds |
| Nvidia Tesla M10          | 32GB (4x 8GB)     | High total VRAM, budget-friendly on used market | Split VRAM might limit some workloads |
| AMD Radeon Instinct MI50   | 32GB HBM2         | High bandwidth, strong FP16/FP32, ROCm support | ROCm ecosystem is improving but not as mature as CUDA |
| Nvidia Tesla V100         | 32GB HBM2         | Mature AI hardware, strong Linux/CUDA support | Pricier than M40/M10 but excellent performance |
| Nvidia A40                | 48GB GDDR6        | Huge VRAM, server-grade GPU                  | Expensive, but future-proof for larger models |

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst